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A REVISED MODIFIED PARALLEL ANALYSIS (RMPA) FOR
THE CONSTRUCTION OF UNIDIMENSIONAL ITEM POOLS

ABSTRACT

Modified Parallel Analysis (MPA) is a heuristic method for assessing "approximate

unidimensionality" of item pools. It compares the second eigenvalue of the observed

correlation matrix with the corresponding eigenvalue extracted from a "parallel" matrix

generated by a unidimensional and locally independent model.

Revised Modified Parallel Analysis (RMPA) generalizes MPA and alleviates some of its

technical limitations. An important and useful feature is a new method for eliminating items

which violate the test's unidimensionality. This is achieved by eliniinating items, one at a

time, to determine their contribution to the matrices' eigenvalues.

We propose a test for detecting items with larger impact in the observed data set, and

eliminating them. The new method was tested in several simulations in which unidimensional

item pools were "contaminated" by various proportions of items from a secondary pool. The
results indicate that RMPA does an excellent job in detecting low (10%) and moderate (25%`,

levels of contamination, but fails in cases of maximal (50%) contamination.
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A REVISED MODIFIED PARALLEL ANALYSIS (RMPA) FOR

CONSTRUCTION OF UNIDIMENSIONAL ITEM POOLS

The increasing popularity of Item Response Theory (IRT) (e.g. Hambleton, 1983; Hu lin,

Drasgow & Parsons 1983; Lord, 1980) in educational, personnel and psychological testing

has caused a revolution in this domain. Though multidimensional item response models have

been developed (e.g. Reckase, 1985; Sympson, 1978), most readily applicable IRT models

used today assume that the test takers responses to all items depend on a single latent trait

(ability). Thus, it is crucial to establish that any item used in estimating the examinee's

position along this ability continuum measures, in fact, the same trait. In other words, the

need to demonstrate that a given item pool is truly unidimensional is a necessary condition for

many applications of IRT.

Defining and Assessing Unidimensionality
Consider a test consisting of n items selected from a larger item pool. Let (.1; be the vector of n

binary responses to the test's items (taking values of 1 and 0 for correct and incorrect

response, respectively), generated by the ith test taker (i=1...N), and let be her response

to the jth item (j=1...n). Finally, let Oi be a vector of t latent traits characterizing the

examinee's abilities. The strong principle of local independence (McDonald, 1981) states that:
n

= 11 Pj(Uij = 6;) (1)
j=1

This principle asserts that the responses to any pair of items are statistically mutually

independent for any individual, or any subpopulation with fixed latent traits. The

dimensionality of CI is, simply, the minimal number of latent traits necessary to produce a

(strong) locally independent model for O. Thus, a pool is unidimensional if responses to all its

items can be produced by unidimensional locally independent models.

Although a voluminous literature exists on the issue of unidimensionality of items and tests

(see Berger and Knol, 1990; Hattie, 1984 and 1985 for partial reviews), currently there is no

single approach which is fully satisfactory and/or universally accepted. Hattie (1984)

compiled a list of 87 measures of unidimensionality and classified them into five

nonoverlapping classes according to their underlying rationale. He distinguished between

indices based on
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(i) closeness to specific answer patterns,

(E) reliability coefficients,

(iii) principal components (PC),

(iv) factor analysis (FA) and

(v) goodness of fit to various IRT models.

Hattie questioned the theoretical rationale of indices based on response patterns and reliability

and showed empirically that the measures based on PC, FA and one parameter IRT (the Rasch

model) are outperformed by methods quantifying deviation from multi-parameter IRT models.

"Approximate" Unidimensionality
Many researchers have argued, based on theoretical and empirical observations, that purely

unidimensional tests, or pools, are quite rare ( e.g. Ackerman, 1989; Humphreys, 1985;

Reckase, Ackerman & Carlson, 1988; Traub, 1983; Yen, 1984, 1985). If, in fact,

unidimensionality is frequently violated it is important to determine the practical implications of

such violations. Following Reckase's original work (1979), several researchers (e.g.

Orasgow & Parson, 1983; Yen, 1984, 1985) have shown that unidimensional models are

quite robust under multidimensionality as long as there is a single "dominant" factor, and

item difficulty is not confounded with dimensionality.

These, and other similar, studies suggest thatstrict unidimensional pools are not necessary for

many practical applications of unidimensional IRT models (e.g. CAT). It is, however,

important to develop methods that can identify pools which deviate from strict

unidirnensionality to a degree which does not seriously affect the fit or accuracy of the

unidimensional IRT model.

This is the motivation behind recent work by Stout, who developed a test of the essential

unidimensionality a a data set (Stout, 1987,1990; Nandakumar, 1991). Essential

independence is achieved if the mean covariance (conditional on -di, the test taker's vector of t

latent traits) between all n(n-1)/2 pairs of items approaches 0 as the number of items increases

to infinity, and the essential dimensionality of a pool is the smallest number of latent traits

necessary to satisfy essential independence. Essential independence is a weaker requirement

than strong local independence and, in practice, it is obtained whenever there is a single

dominant dimension in the data (e.g. Nandakumar, 1991).

5
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In the same spirit Drasgow and Lissak(1983) presented Modified Parallel Analysis (MPA for

short) as "a technique that can determine when an item pool is sufficiently unidimensional for

the use of nu (Drasgow and Lissak, 1983, page 365). Modified Parallel Analysis relies on

FA, a well understood method which is widely available to users in most statistical packages.

Thus, it is (conceptually and computationally) easier to use than Stout's methods. This study

will develop a revised and improved version of MPA.

Parallel and Modified Parallel Analysis

Parallel Analysis (PA) was proposed by Horn (1965) as an alternative to traditional factor

analytical methods for identifying the number of latent factors. (e.g. Kaiser, 1960, Cattell,

1966, Bartlett, 1950).

The rationale behind PA is intuitively compelling, and its application is simple and

straightforward: Random correlation matrices are generated, and their eigenvalues are

extracted and averaged. The eigenvalues of the actual correlations are compared to these

means and those factors with eigenvalues larger than their counterparts from the

randomly generated data are retained. Crawford and Koopman (1973), Humphreys and

Montanelli (1975) and Zwick and Velicer (1986), among others, report that PA works well in

both Principal Components (PC) and Factor Analysis (FA). Recently Longman, Cota, Holden

and Fekken (1989) published regression equations that eliminate the need to actually generate

random matrices for each PA (for the PC case).

Parallel Analysis is used to determine the true dimensionality of a given data set, whereas in

most applications of IRT models one seeks to determine whether a data set deviates

significantly from unidimensionality. Modified Parallel Analysis (Drasgow & Lissak, 1983)

provides an ingenious way of answering this question, uSing the rationale of PA. Its basic

stages are:

(1) The intercorrelations (preferably tetrachoric) of the test's items are factor analyzed and the

eigenvalues of the unrotated solution are calculated.

(2) A "parallel" unidimensional data set is generated by an IRT model. This data set parallels

the observed one along all its attributes: It has an equal number of examinees with identical

abilities, and it has the same number of items with identical parameters. Since responses

are generated by an unidimensional IRT model satisfying the strong local independence

principle the data set is, by defmition, unidimensional.

6
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(3) The (tetrachoric) correlations of the parallel data set are factor analyzed, and the

eigenvalues of the unrotated solution are calculated.

(4) The dimensionality of the pool is assessed by comparing the magnitude of the second

eigenvalues of the two data sets: If the empirical value is "sufficiently close" to the one

obtained from the parallel data set, the pool is considered unidimensional.

Drasgow and Lissak (1983) reported five empirical studies providing strong empirical support

for the procedure.

Eigenvalue based factor analytical techniques are not always successful in recovering the true

dimensionality of binary data and, consequently, can't always distinguish between

unidimensional and multidimensional data sets (e.g. Collins, Cliff, McCormick and Zatlin,

1986; Hattie, 1984; Knol and Berger, 1991; Roznowsky, Tucker & Humphreys, 1991;

Zwick and Velicer, 1986). Thus it may seem surprising that some of the same measures

perform very well in the framework of PA, and MPA. It is important to stress that the key to

the success of these methods is their comparative nature. Whatever deficiencies these statistics

have, they affect equally the resu'ls of the two data sets. Both PA and MPA focus on, and

highlight, whatever differences exist between the empirical and parallel data sets above and

beyond the systematic biases that the FA based measures may share.

Thus, in Hattie's (1984) typology MPA should not be considered a "factor analytic approach".

In fact, it is closer to the "measures of fit to IRT models". MPA is a general method for

assessing the similarity, or closeness, between two parallel data sets (one of which is known

to be unidimensional).Jn this case similarity is quantified by some of the statistics usually

employed in FA.

A critique of MPA
Modified Parallel Analysis suffers from a few technical limitations. In this section we

describe these limitations and the problems they may cause in arlying the method:

(i) MPA is a randomized procedure, i.e. its results depend to a certain degree on a random

process, namely, the selection of the parallel data set. Thus, with small enough samples,

researchers applying exactly the same procedure to the same set of data may reach different

conclusions because of the variance between the random data sets generated in their

simulations.
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(ii) The simulated and the empirical data sets are equated along most important dimensions and

any discrepancy between their eigenvalues can ,supposedly, be attributed to the

multidimensionality of the empirical matrix. Yet, the communalities are estimated in a

purely empirical fashion separately for each data set, introducing another important

difference between them. This factor may bias (in an unknown direction and to an

unknown degree) the comparative analysis.

(iii) MPA is a heuristic procedure, i.e. it lacks a measure of sampling variability for the formal

assessment of the closeness of the critical statistic (the second eigenvalue) obtained from

the unidirnensional and the empirical solutions.

Other important limitations of MPA are:

(iv) It compares only the second pair of eigenvalues of the two matrices. This choice lacks a

solid theoretical or empirical justification, and it may miss differences between the other

eigenvalues (especially the third).

(v) MPA is too limited in its scope. The technique provides a global omnibus test of the

hypothesis concerning the pool's unidimensionality. It lacks, however, a mechanism to

follow up rejections of the hypothesized pattern, by eliminating some items and identify a

unidimensional subset of the pool.

A REVISED MODIFIED PARALLEL ANALYSIS (RMPA)

In this section we outline a revised procedure (RMPA) which extends and generalizes the

MPA. The revised method offers solutions to the technical problems described above

and incorporates them into the existing framework of MPA. RMPA also includes a second

stage which allows one to extract unidimensional subsets from larger, potentially

multidimensional, pools.

To solve the first problem we replace the random generation of a parallel unidimensional

population by the theoretical derivation of the expected correlations under the assumptions of

(1) local independence, (2) unidirnensionality of the parameter space and (3) the three

parameter logistic model (e.g. Lord, 1980). The probability of a correct response for item j by

a test taker with (a single) ability ei is given by P(Uij = 11 ei) or, in a shorter notation, P.

1 ci
Pii = cj +

1 + exp -1.7 aj(8i bj)
12)
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where a. is the itern's discrimination parmemr,b is the item's difficulty and c. is its pseudo-

guessing probability (see Hambleton, 1983 or Lord, 1980 for details). Under these

assumptions the expected number of correct answers to any pair of arbitrary items, j and k, in

a random sample of N examinees is:

fj= Pji and fk = Pki
i = 1 i = 1

(3)

Under the assumption of local independence, the expected number of correct answers to both

items, j and k, is:

fjk= PjiPki
i = 1

(4)

Given fik and the two marginals, fi and fk, the expected 2x/ -ontingency table can be

constructed, and the expected tetrachoric correlation can be estimated by standard methods

(e.g. by solving a polynomial using the Newton Raphson method, as suggested by Kendall &

Stuart 1979, pages 324-327). All expectations are (as in the original MPA) conditional upon

the abilities and item parameters shared by the two data sets. The calculation can be further

refined when the true distribution of the unidimensional abilities (9i) in the population is

known. In these cases, the summation is replaced by integration over 0 of the probability

density function of 8.

To solve the second problem we replace the separate estimation of the communalities in the

two data sets by the expected tetrachoric correlation between (hypothetical) experimentally

independent administrations of any item under th: assumptions of (1) local independence,

(2) unidirnensional ability and (3) a three parameter logistic item curve. This procedure

amounts to estimating the items communalities by their expected test-retest reliabilities. It is

well known (e.g. Lord & Novick, 1968; Mulaik, 1972) that a measure's reliability provides an

upper bound to its communality. The estimation procedure is just a special case of the

technique described above for the calculation of the expected correlation. More specifically, if

we let j=k, Equation 4 is reduced to:

fit': Pji
i = 1

(4a)
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The solution of the third problem relies on a data analytic procedure known as "jacknifing"

(see Arvesen and Salsburg, 1975, Miller, 1974 or Mosteller & Tukey, 1977 for partial

reviews) 1. Assume that the original nxn correlation matrix between the test's items is strictly

uaidimensional. By eliminating one item at a time (i.e. deleting a row, and the corresponding

column, from the original matrix) we obtain n submatrices of order (n-1)x(n-1) which, by

definition, are also unidimensional. It is easy to show thatunder the "one factor model" (i.e. a

matrix of rank one), the average first eigenvalue of these n submatrices, scaled by a factor of n/

(n-1), is an unbiased estimate of the first eigenvalue of the original intact matrix.

A useful and important consequence of the "eliminate one item at a time" procedure is that it

provides a simple method for assessing the impact, or influence2, of any single item on the

test's eigenvalues. The logic of the MPA procedure predicts that, under unidimensionality, the

two matrices will have equal eigenvalues. It is generally accepted, and it was confirmed

empirically by Drasgow & Lissak(1983), that the first eigenvalue (Xi) is approximately equal

in the observed and the expected matrices, regardless ofthe dimensionality of the observed

responses. Thus, except for sampling error, the ratio of the two eigenvalues, RL1, should be:

RL = Xi(observed)/ X1(expected) = I . (5)

Furthermore, under unidimensionality, the eigenvalues of the n submatrices of the two data

sets will be similar, will have equal variances and will be highly correlated. Finally, the

removal of any given item from the pool will affect the observed and the expected data sets in

identical fashion and to an equal degree. Thus, equality (5) should also hold in all n

submatrices obtained by eliminating one item at a time. Let be the first eigenvalue of the

submatrix obtained after the deletion of item i, and let RLii be the ratio of the eigenvalues from

the two parallel data sets. Then, for all items (i=1...n), the ratio of the jacknifed

eigenvalues should equal the ratio of the original values:

= (observed)/4(expected) = RL1 . (6)

If the responses are unidimensional, similar results are expected to hold for the second, third,

and ail subsequent eigenvalues. If, on the other hand, the observed responses violate

unidimensionality, the analysis of the two data sets should yield differential results. For

example, Drasgow and Lissak(1983) based the original MCPA on the prediction that the second

1 0
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eigenvalue of the observed matrix will be larger than its counterpart from the parallel

unidimensional data set:

RL,= A.,(observed)/ A.,(expected) > 1 . (7)

If the data are generated by a multidimensional model we expect the mean of the n second

eigenvalues extracted from the observed submatrices to be larger, and their variance to

be higher, than their counterparts from the expected data set. Depending on the type and

degree of deviation from unidimensionality, the correlation between the observed and

expected values can be low (or even negative). Furthermore, the eigenvalues of the observed

responses will be more sensitive to the removal of the foreign (or "contaminating") items.

Since the expected matrix is unidimensional, its eigenvalues should not be affected

considerably when any arbitrary item is removed. However, when a contaminating

item is removed from a multidimensional test, the data set becomes closer to unidimensionality

and its eigenvalues should decrease. For example, in a test of length n=50 with 8 foreign

items (8/50=16% contamination), after the removal of such an item, the level of contamination

is reduced to (7/49=) 14%. Thus, whenever a contaminating item is eliminated the matching

eigenvalues should be more similar to each other than in those cases in which a regular

(noncontaminating) item is removed, Consequently, the ratio of the eigenvalues should be

closer to unity in these instances.

To summarize, for any given data set, the ratio between the first eigenvalues, RL1, in the two

data sets can be used as a b3nchmark against which one can assess and test the ratios derived

from the second and third eigenvalues (RL2 and RL3, respectively), At the global (i.e. test or

pool) level, this approach is attractive because the behavior of RL2 and RL3 is assessed by a

data based index which is more sensitive to, and reflects, the peculiarities and idiosyncrasies of

the specific test being examined. At the local (i.e. item) level, this procedure provides a natural

way of ranking, and scaling, the items according to their deviation from the pattern expected

under unidimensionality. These properties can be used to develop a procedure for testing the

global dimensionality of the observed responses, and a method of selecting uuidimensional

pools. In the next section we describe the technical details of such a testing procedure.

The "gap tes,
To facilitate the comparison of the two data sets we calculate, for all items (i=1...n) and for the

first k eigenvalues (k=1,2,3), the ratio of the two matched eigenvalues:

RLici = ?s.j:(observed)/ 4(expected) . (8)

1 1



The global ratio RL1, as well as the individual RL-11(i=1...n), are insensitive to the

dimensionality of the observed data set. Their empirical distribution will be used to test the

hypothesis that the ratios of the second and third eigenvalues behave similarly. Formally, we

wish to test that F( RL:2I } = F{RLii } , and F{RL3'i} = F(RLii } , where F{.} stands for the

distribution of the rc-levant statistic. The alternative hypothesis is that the ratios are distributed

differentially.

We are particularly interested in the case where an essentially unidimensional data set is

contaminated by a second (sometimes called "nuisance") ability. We speculated earlier, that

removal of such contaminating items will affect differentially the two matched eigenvalues.

When analyzing the correlations from the observed responses we expect to observe two

distinct clusters of eigenvalues --- from the unidimensional and the contaminating pool,

respectively --- separated by a substantial "gap". No parallel clustering and separation is

expected in the corresponding eigenvalues of the matrix of expected correlations.

To detect such unusual gaps we adopt a procedure described by Wainer and Schacht (1978) to

detect unusually large gaps in strings of ordered values. The first step in this procedure is to

rank order the values in descending order and to calculate the (n-1) gaps, g, by subtracting

each observation from the immediately previous (i.e. larger) one. The gaps are then weighted

by a set of logistic weights to yield weighted gaps, yi. These weights were selected to account

and compensate for the fact that, typically, observations are more dense (hence should be

overweighted) near the center and more sparse (and should be underweighted) in the tails of

the distribution. Formally:

y; = i (n - gi . (9)

Finally, these values are standaiuized by division by ym, the midmean (i.e. the mean of the

central 50% values) of the weighted gaps. Thus, me standardized weighted gaps (SWGs

for short), zi can be expressed as:

(10)

Zero gaps indicate that two adjacent observations are equal, and unit gaps indicate .at the

distance between two observations is equal to the gaps' rnidmean. By defmition, all gaps are

non-negative but are unbounded from above. Wainer and Schacht (1978) suggest that zi

values greater than 2.25 indicate "unusually" large gaps. The probability of observing gaps

this wide by chance is approximately 0.03 under the normal distribution, but this value was

12



shown by Wainer and Schacht (1978) to work quite well for a variety of symmetric t

distributions with tails larger than the normal.

We will use this procedure to detect the location of the gap separating the items from the two

pools, on the basis of ratios of the matched eigenvalues, RL:ki (k > 1). Thus, the hypothesis

will be tested by comparing MAX(Zki), the largest SWG, with a critical rejection threshold.

However, in the absence of precise information regarding the form of the distribution of these

ratios, and the multiplicity of tests involved, it is not sufficient to rely on the 2.25 universal

rule of thumb proposed by Wainer and Schacht. Instead, we find it necessary to develop more

cunservative rejection rules .

There are various ways of deriving critical rejection points for this decision: one can estimate

the desired percentiles (.01, .05, etc.) from the distribution of RLii, or use a version of

Chebyshev inequality (e.g. Stuart and Ord, 1987, page 110). The regular Chebyshev

inequality states that the probability of finding a value located more than K standard deviations

(SDs) from the population's mean is smaller than 1/K2, for any distribution with finite

moments; A tighter version, invoking the additional assumptions that the distribution is

symmetric and unimodal, yields a lower upper limit (4/9K2), for the probability of the same

event 3.

The decision, to reject Ho, will be based on a comparison with a critical threshold, T(z1). The

threshold is derived from the distribution of the ratios of the first eigenvalue, RI4, in the same

data set. Specifically, for k=2,3 we will reject Ho if:

MAX(Z) > T(z1) (M1 + I(S1)

where M1 and S1 are the mean and SD, respectively, of the SWGs, z calculated from the

ratios of first set of matched eigenvalues,

IS MAX(z2i) and/or MAX(z3i) > T(z1), i.e. there is a significant gap in either distribution of

ratios, we can eliminate those items which are located above the significant gap(s)4. Let mi

denote the number of items eliminated (m1 > 0) after this first pass through the data. Repeat

the whole process with the reduced (n-m1)x(n-m1) correlation matrices. This second analysis

may lead to the elimination of additional (say m2) items. Repeat the procedure with the

remaining items, and stop when the test fails to detect items to be rejected.
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AN EMPIRICAL STUDY OF RMPA

Method

In this section we report results of an empirical study designed to test RMPA. Like most other

studies in this area we simulated artificial test results by combining real item parameters and a

set of reasonable assumptions regarding the distribution of abilities in the population of test

takers. For the purpose of this study we contaminated a large unidimensional pool by (various

proportions of) responses generated by a second (nuisance) ability correlated (at various

levels) with the first. The efficiency of the RMPA was assessed by its ability to identify

correctly the contaminating items and, consequently, partition the test into its two basic

components.

We expect this procedure to be most efficient in cases of approximate unidimensionality. In

other words, it should-detect accurately relatively low levels of contamination, but not mixtures

of two (equal) abilities. We also predict that the accuracy of the detection will be inversely

related to the correlation between the two abilities involved.

Design

We generated 20 distinct "artificial tests". The following characteristics were fixed for all the

tests:

n = test length = 80 items;

N = sample size = 2000 examinees;

t = number of abilities = 2.

The following variables were manipulated across tests:

p = proportion of contaminating items = 0%, 10%, 25% or 50% (p=0% is a a strictly,

uncontaminated, unidimensional test and the other three cases represent low, medium

and high levels of contamination);

r = the correlation between 91 and 92, the two abilities = 0.0, 0.5, 0.7 (the three values are

approximately equally spaced in terms of r2).

Replications: All combinations of p and r were replicated twice (i.e. with different seeds for

the generation of the abilities, and different item parameters). In the sequel the two replication5'

are labeled "B" and "R".
14
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With the exception of the control condition (p=0, r=0), this can be viewed as a 3 x 3 factorial

design repeated twice.

Item Parameters

The items for half the tests (replication "R') were randomly selected from the item bank of a

test of English as a Foreign Language (EFL). This test was developed and is routinely used

by the National Institute for Testing and Evaluation (NITE) as part of the Psychometric

Entrance Test (PET) which is administered to all applicants to universities in Israel. The item

parameters were estimated under the three parameter logistic model (Equation 2) using

responses from approximately 7,000 examinees who took the test in 1988. The estimation

was performed using the N1TEST parameter estimation program (Cohen & Bodner, 1989).

These parameter estimates for the n=80 items will henceforth be referred to as "true

parameters".

The items for the other 10 tests (replication "B") were generated artificially, according to some

distributional assumptions: The discrimination parameters (a's) were sampled from a normal

distribution with a mean of 1.1 and a s.d. of 0.3; The difficulty parameters (b's) were

obtained from a normal distribution with a mean of 0 and a s.d. of 0.8; The pseudo-guessing

parameters (c's) are taken from a uniform distribution over the range 0.1 - 0.3. The values of

the three parameters were sampled, from the respective sources, independently.

Table 1 summarizes the information regarding the two sets of true parameters. The two tests

are equally difficult, but vary with respect to other aspects. The discrimination parameters of

the real items ("R") have a higher mean andvariance (ma=1.33 and sa.51) than the artificial

ones ("B") (ma=1.12 and sa3.25) On the average, it is easier to guess in the artificial test

(me=0.2 vs. 0.16). Finally, whereas the parameters of the artificial items are uncorrelated (by

design), the values of the EFL items parameters are moderately correlated.

Insert Table 1 about here
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Abilities

All samples include N=2000 simulated "respondents". First we generated four mutually

uncorrelated sets of abilities (T, A1, A2 and A3): We sampled 8000 independent observations

from the standard (0,1) normal distribution and randomly assigned them to the four sets.

Correlated abilities were generated by calculating:

T(r) = r + - r2 Ai (II)

where A. stand for A1, A2 or A3, and r is the desired correlation (0.0, 0.5, 0.7) between the

new set of abilities, T(r), and the reference set, T. Thus T(0), T(.5), T(.7) are sets of N=2000

normally distributed abilities which correlate 0.0. 0.5 and 0.7, respectively, with T.

Responses

Four sets of unidimensional response vectors were generated. Each set was simulated with a

different set of abilities fT, T(0), T(.5) or T(.7)1, and all responses were generated with the

"true" item parameters. The response vectors were simulated with the NITECAT software

package (Cohen, I3odner & Ronen, 1989), which implements the process described by

Drasgow and Lissak (1983).

The vectors generated with the T abilities are considered the "original" responses based on the

dominant ability. Contaminated responses were obtained by replacing the original responses

on p% of the items (randomly selected) with the corresponding responses generated by one of

the other samples of abilities. Note that for the case of r=0 this procedure simulates a two-

dimensional "noncompensatory" model (e.g. Ackerman, 1989, Sympson, 1978), whereas the

other cases (r > 0) simulate "compensatory" models (e.g. Ackerman, 1989, Reckase, 1985).

Parameter estimation

In each of the artificial tests the three parameters of the n=80 items were estimated with the

NITEST program (Cohen & Bodner, 1989). These are the various sets of "estimated

parameters", to be used in the generation of the expected correlations.

Consistent with the massive literature on this topic (e.g. Dorans & Kingston, 1985; Miller &

Oshirna, 1992: Oshima & Miller, 1992), we found that the estimates of the b's and c's were

not affected by the contamination. However, the estimates of the a's (the discrimination

parameters) are sensitive to the level of contamination. Consistent with other studies in the

literature, the estimates for items loaded on the dominant ability are hardly affected, whereas

the discrimination measures of the contaminating items are reduced considerably. The
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magaitude of this "shrinkage" is related to the level of contamination and the correlation

between the two factors.

Results

Standard MPA

The standard MPA procedure, prescribed 5y Drasgow and Lissak (1983), was performed.

Table 2 summarizes the results of this analysis. The table displays the first

three eigenvalues of both correlation matrices, as well as their ratios.

Insert Table 2 about here

There is a clear and consistent pattern in the data which can be summarized by three

observations:

(i) The first eigenvalues are, practically, equal in the two matrices and their ratio is,

essentially, 1. There are no discernible differences between the 18 contaminated data sets

and, in this respect, they are indistinguishable from the two uncontaminated tests.

(ii) In all contaminated tests, the second eigenvalue of the observed matrix is larger than its

expected counterpart. Consequently, their ratio is greater than unity, as predicted by

Drasgow & Lissak (1983). The ratio is a monotonically increasing function of p, the level

of contamination, and a monotonically decreasing funcCon of r, the inter-ability

correlation.

(iii) The ratio of the third pair of eigenvalues is also greater than one. In fact, in most cases it

is greater than the second ratio. The third ratio is not systematically related to r, the inter-

ability correlation. However, it increases monotonically as a function of p, the level of

contamination. The sharpest effect is obtained for highly (r=0.7) correlated, and the

weakest effect is found for uncorrelated (1=0.0) abilities.

BUPA
We performed an informal RMPA by examining the eigenvalues of the jacknifed parallel

matrices. Table 3 displays means, and standard deviations, of the first three eigenvalues

extracted from the jacknifed submatrices. All the values in the table are based on n=80

matrices of order (n- 1)=79. Note that the mean values are related to the eigenvalues from table

2 through multiplication by a scale factor of nAn-l)=80179.
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Insert Table 3 about here

Table 4 presents ratios of the means, and the variances, of the three jacknifed eigenvalues of

the 20 tests.

Insert Table 4 about here

There is a close correspondence between these mean ratios and the ratios presented in table 2,

and the same three basic conclusions apply here, as well. The ratios of the variances follow a

similar, but not identical, pattern:

(i) The variances of the first eigenvalues are, on the average, very close to each other and their

ratio is close to unity. The only exceptions are the cases {r=0, p=50}, which represent

mixtures of two unidimensional half-tests involving uncorrelated abilities.

(ii) In most cases (and on the average) the variance of the second (jacknifed) eigenvalues in the

observed matrices is higher than in the expected one. The effect is most pronounced in the

case of the independent traits (r=0), and for moderate or high levels of contamination

(p=25 and 50, respectively).

(iii) In all 20 tests the variances of the third (jacknifed) eigenvalues are substantially higher in

the observed matrices. The effect is much stronger than for the second eigenvalue, but

there is no systematic pattern of change across levels and types of contamination.

Table 5 presents the correlations between the matched jacknifed eigenvalues for the 20 tests.

Each correlation is based on n=80 observations.

Insert Table 5 about here
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The pattern of results is clear and consistent with our expectations:

(i) There is a high (almost perfect) linear correlation for the first eigenvalue in most tests. The

single exception is the { Rep=R, r=0, p=50} case, which is a mixture of two uncorrelated

(unidimensional) half-tests.

(ii) In all cases of moderate and high contamination (p=25 and 50, respectively) the

correlations based on the second and third eigenvalue are low, or ciegative.

(iii) In most cases of low contamination (p=10) the correlations based on the second eigenvalue

are high (almost like for the first eigenvalue), but the correlations based on the third

eigenvalue are always low, or negative.

This pattern indicates that, as suggested by Drasgow and Lissak (1983) and others, the first

eigenvalues of the two parallel matrices are practically indistinguishable, across all types and

levels of contamination. However, contrary to Drasgow and Lissak's speculation, not all the

differences between the two data sets can be detected by comparing the second pair of

eigenvalues. The means, variances and correlations of the jacknifed values seem to suggest

that in some cases of low contamination (p=0.10) departure from unidimensionality can only

be detected by examining the third pair of eigenvalues.

Rejection Thresholda

Table 6 presents six rejection thresholds calculated from the distribution of the first ratio in the

20 tests. These six rejection thresholds are obtained by crossing two confidence levels (95%

and 99%) with three rules of detection an empirical value, a value calculated by the "tight"

(i.e. assuming unidimodality and symmetry) Chebyshev inequality, and a value derived from

the unconstrained Chebyshev inequality.

Insert Table 6 about here

In all tests, and for both confidence levels, the empirical percentile is more liberal than the

corresponding Chebyshev bounds. Thus, the three rules can be ranked, from the most to the

least conservative, identically for all tests and for both levels of confidence:

Unconstrained Chebyshev > Constrained Chebyshev > Empirical

/ 9
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One remarkable and reassuring aspect of this table is the relatively low variance of the bounds

across the various conditions and replications. This indicates that the ratio of the first pair of

jacknifed eigenvalues has a relatively stable distribution across the levels and types of

contamination.

The most important issue, from a practical point of view, is to choose the "best" threshold for

detection of wide gaps. To address this issue we focus on the performance of the various

indices in the uncontaminated (p=0) case. Table 7 displays the proportion ofSWGs exceeding

the various indices for the three ratios. Since this is a strictly unidimensional test, we expect

this proportion to be invariant for all three ratios and not to exceed its nominal confidence level

(95% or 99%), Clearly, the empirical percentiles fail the invariance requirement and the 95%

constrained Chebyshev bound is too liberal for the third ratio. In light of these results we

conclude that is best to identify as "unusually wide gaps" those values that exceed the 95%

unconstrained, or the constrained 99% Chebyshev bounds. We will focus primarily on

rejections with 99% confidence. However, for completeness sake, we will report in the sequel

results according to all the thresholds.

Insert Table 7 about here

Partition of the Tests

Tables 8a - 8c list the maximal SWGs observed in the distiibutions of the three ratios for each

test. The tables also display the pattern of significance achieved by this maximal SWG, and its

location. The columns labeled "significance" simply count how many fof the increasingly

stringent) thresholds were exceeded in each family of tests. In the 95% and 99% columns, a I

indicates that the observed value is greater than the empirical percentile lower than both

Chebyshev bounds; a value of 2 describes a situation where the actual value is greater than the

constrained (but smaller than the unconstrained) Chebyshev bound, and a value Of 3 denotes a

case where the maximal gap is larger than the most severe rejection rule. Our previous results

(see table 7) dictue to interpret as "significant" values of 2 (at 99%), or values of 3 (at 95%).

The location of the gap is described by reporting the number of items above, andbelow, it.

Recall that according to the logic of RMPA the contaminating items should have lower (i.e.

closer to unity) ratios. We rank ordered the ratios in ascending order, so these items are

expected to cluster "above" the gap. As a rule, we expect the proportion of item above the gap

to match, approximately, the proportion of contamination in the specific test.

20
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We reject the null hypothesis of unidimensionality if:

(1) The number of items "above the gap" < n/2 AND

(2) The Maximal SWG of the second AND/OR the third ratio is greater than the designated

rejection threshold.

We examine three rejection rules with decreasing levels of conservatism: (1) 99% according to

an unconstrained Chebyshev inequality, (2) 99% according to a constrained Chebyshev

inequality, and (3) 95% according to the unconstrained Chebyshev inequality.

Insert Tables 8a - 8c about here

As expected, there are no significant gaps in the distribution of the first ratio but, in most tests,

the largest SWG in the distribution of the second and/or third ratio is significant. We examine

these significant gaps according to the three valid rejection thresholds:

All six cases with low (p=10) contamination are significant at the 99% level (five of them by

the most severe criterion). In all six cases the gap separates the top 10% items from the bottom

90%. It appears that the procedure works well for this type of contamination.

Only three of the highly contaminated tests (p=50) are significant at 99%. More important,

however, is the fact that in all six tests the widest gap is located at the bottom of the

distribution. Although the numbers vary slightly across tests, the proportion ofitems above

the gap is always greater than 80%. Clearly, the gap test does not work well for a mixture of

two half tests.

The pattern of results is slightly more complex in the case of moderate (p=25) contamination,

and it depends on the level of the inter-ability correlation: For both tests with uncorrelated

(r=0) abilities. and one of the tests with moderately correlated (r-4).5) abilities, the significant

gap (99%) in the distribution of the second ratio separates the upper 25% items from the rest of

the test. In the other test with r..0.5 the gap between the top 25% of the items and the lower

75% is significant at the 95% level. Finally, for the tests involving highly correlated abilities

(r=0.7), the maximal gap is located at the lower end of the distribution (69 and 72 items above

the gap). In both cases the second largest gap distinguishes between the (most) contaminating

items and the original ones. Thus, the gap test operates well only for cases with low inter-

ability correlations.
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To summarize, RMPA found a significant gap in the distribution of the ratios of matched

eigenvalues in all the tests examined. In 14 tests the gap was significant at 99% and in the

other six at 95%. A significant gap located in the upper half of the distribution (i.e. with fewer

items above the gap than bellow it) is taken as a strong indication of violation of

unidimensionality and prescribes elimination of all items above the gap. The ten tests

identified by this criterion include all those with low contamination (p=10), as well as the

moderately contaminated ones (p=25), with moderate level of inter-ability correlation (r <0.7).

In the sequel we focus only on these 10 shortened tests. Plots of the 10 relevant distributions

of standardized weighted gaps (not presented here because of space limitations), clearly show

that:

(i) the contaminating items are clustered at one end of the distribution, and

(ii) there is an unusually large gap separating this cluster from the bulk of the items. This gap

can be detected in the raw gaps, but it is more pronounced in the standardized weighted

form.

The quality of the technique is assessed by its ability to detect the contaminating items and

remove them, while retaining the original ones. Table 9 summarizes this analysis for the 10

short tests. For each one we report the hit rate (i.e. contaminating items rejected correctly)

and the false alarm rate (i.e. original items rejected incorrectly). The figures are very

impressive ---- for all the tests with p=10%, the hit rate is 100% and for the tests with p=25%

it is 95%. Both figures are accompanied by false alarm rates close to 0.

Insert Table 9 about here

Re-examination of the shortened testi

Having shortened 10 tests according to the results of the initial RMPA we repeated the

procedure. The second iteration verifies the unidimensionality of the shortened tests: If the

first stage is successful in removing all sources of contamination, we do not expect to detect

any significant gaps in this second round.

Tables 10 and 11 report the results of the MPA and the RMPA of the shortened tests. A quick

comparison with tables 2 and 4 (summarizing the same results for the original full tests)

reveals that all major sources of multidimensionality were eliminated. The ratios of the second
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eigenvalues, and the ratios of their variances, are close to unity (We assume that a heuristic

NIPA would also declare all these tests unidimensional). The third ratios are somewhat higher

but are, considerably, lower than those of the original tests.

Insert Tables 10 and 11 about here

The SWGs of the remaining items were calculated, new rejection thresholds were derived, and

the gap test was applied again 5.

The only significant gap was found in the { Rep=B r=0.7 p=10} test. In this case the second

iteration of the RMPA prescribes removal of five additional items. All contaminated items

were successfully detected by the first iteration so these are five ''false alarms". The final test

consists of 66 unidimensional items (instead of 72).
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SUMMARY

The goal of the current research was to develop a practical, yet theoretically sound and

computationally feasible, tool for testing the global dimensionality of large item pools and

eliminating items which cause violations of the pool's unidimensionality. Both goals are

attained in the unified framework of revised modified parallel analysis (RMPA).

RMPA is an extension and generalization of the modified parallel analysis (MPA) method that

was developed by Drasgow and Lissak (1983) as an approximate method for testing the

unidimensionality of item pools. MPA replies on a heuristic comparison of a statistic (the

second eigenvalue) derived from the matrix of items' intercorrelations and the corresponding

value extracted from a "parallel" matrix generated by a unidimensional, and locally

independent, model (in our case the three parameter logistic model).

RMPA is based on a similar comparative logic, but improves upon MPA in several ways:

(1) It alleviates some minor technical limitations, through the use of expected inter-item

correlations and item communalities. While in MPA the inter-item correlations are

generated by a randomized procedure, in RMPA their expected values are derived

theoretically under the exact assumptions of the 3-P logistic model.

(2) lc implements a formal test for comparing the observed data set with its parallel (and

unidimensional) counterpart. The test is based on inspection of the ratio of the k'th

eigenvalue of the observed intercorrelation matrix to that of the expected matrix. The ratios

for the second and third eigenvalues are compared with the ratio of the first eigenvalue

which serves as a benchmark. In case of a unidimensional data set, all three ratios should

be of equal magnitude. Violations of unidimensionality are manifested in larger observed/

expected ratios of the second and third eigenvalues relative to that of the first.

(3) Contingent upon the results of this test, it provides a method for identifying and

eliminating items which violate the test's unidimensionality.

The testing and elimination procedures are based on the "eliminate one item at a time"

principle. This methodology allows one to assess the contribution of each item to the test's

eigenvalues. Furthermore, one can determine the variance and distribution of these values and

analyze the differential impact of any given item in the observed and parallel matrices. Items

which have a "significantly" larger impact in the observed data set violate unidirnensionality.

The detection of these items relies on a conservative version of Wainer & Schacht's (1978)

"gapping" test.
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The lagest (first) eigenvalues of the observed abd expected matrices are practically identical in

all cases, regardless of the level of correlation between the two abilities and the degree of

contamination. Therefore, we used the distribution of their ratio to determine rejection

thresholds for the ratio of the second and third eigenvalues. These thresholds are based on

conservative Chebyshev bounds, and are specifically tailored to each data set.

RMPA was tested in several simulations of unidimensional item pools which were

contaminated by various proportions of items loaded on a secondary nuisance ability. The

method was highly successful in identifying low (10%) levels of departure from

unidimensionality, and in detecting moderate (25%) deviations from unidirnensionality when

the abilities were not highly (r < 0.7) correlated. In these cases over 90% of the contaminating

items were identified and less than 1% of the original items were eliminated erroneously. The

procedure failed however, in tests which are easily detected as multidimensional by the MPA

method, namely tests which are equal mixtures (50%) of items loaded on two abilities.

The two methods, MPA and RMPA, can be regarded as complementing each other. Clear

cases of multidimensionality can be easily detected by inspecting the observed/expected ratio of

the second eigenvalue but the gapping test is unable to separate between the two

(unidimensional) sub-pools. Paradoxically, in cases of multidimensionality which are not

easily detected by the magnitude of the ratio, the gapping test not only detects the presence of

nuisance ability factor but also identifies the contaminating items. The findings of this study

suggest that practical application of RMPA should proceed in two stages. In the first stage, the

ratio of the second eigenvalues (observed/expected) should be inspected. In the second stage

of the analysis the gapping test is applied. The decision as to the unidimensionality of the data

set is determined by a conjunction of the results from both stages. Therefore, the

unidimensionality hypothesis should be rejected if the results of either stage indicate

multidimensionality. Large ratio (in the first stage) combined with nonsignificant gaps (in the

second stage) most probably indicate a case of a multidimensional data set with close to equal

proportions of items loaded on each ability factor.

It remains to be proved whether RMPA is as effective in separating out items that load on more

than two factors and, more generally, whether the procedure is applicable to other factor

structures,

We conclude by pointing out that the logic of MPA and RMPA can be generalized to other

statistics of closeness between the two data sets. For example, it might be interesting to apply

it to indices derived from non linear factor analysis (e.s. McDonald, 1982).
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FOOTNOTES

(1) Strictly speaking "jacknifmg" refers to an analysis in which observations (i.e. respondents)

are eliminated one at a time from the sample. In this case, we eliminate variables (items) in

a similar fashion. Several item analysis computer programs use a similar approach in order

to identify subscales with maximal reliability.

(2) Ii, the sample influence function (Devlin, Gnanadesikan and Kettenring, 1975; Hampel,

1974) of parameter, T, is given by:

= (n-1)(T - T.i),

where n is the number of items, and T
1

is an estimate of the parameter T obtained after the
-

elimination of item i. Note that I. is, simply, a linear transformation of T
-1

(3) Strictly speaking, Chebyshev inequality requires knowledge of the parameters (mean and

variance) of the population of interest. However, Saw, Yang and Mo (1984) have shown

that sample estimates of these parameters can be used, with very little loss of precision, in

moderately large samples.

(4) Occasionally a large (and significant) gap will be detected in the lower tail of the

distribution, i.e. separating the bulk of the data from a minority of items with unusual low

ratios of observed/expected jacknifed eigenvalues. Clearly, these cases are not relevant for

our hypothesis.

(5) Since the procedure is data driven, we opt not to use the thresholds values employed in the

first stage. Thus, when analyzing a test consisting of (n - m1) items one should obtain the

same results, and reach the same conclusions, whether it is treated as "an original" or "a

reduced" test.
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Table 1:
Means, standard deviations and correlations of the two sets of item parameters

Rep=B
Parameter n Mean Std. Dev.

Rep=R
Parameter n Mean Std. Dev.

a 80 1.123 0.245 a 80 1.328 0.511

b 80 0.172 0.873 b 80 -0.026 0.985

c 80 0.202 0.057 c 80 0.161 0.098

,
Correlations Correlations

,

a b c a b c

a 1.000 0.090 -0.196 a 1.000 0.518 0.397

b 0.090 1.000 -0.260 b 0.518 1.000 0.754

c -0.196 -0.260 1.000 c 0.397 0.754 1.000
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Table 2:

Modified Parallel Analysis (MPA) of 20 tests:
The first three eigenvalues for the observed and
expected matrices, and their ratios

Rep r p

Eigenvalue 1 Eigenvalue 2 Eigenvalue 3

Exp Obs Obs/Exp Exp Obs Obs/Exp Exp Obs Obs/Exp

B - 0 24.34 25.10 1.03 1.79 1.78 0.99 0.17 0.67 4.02

B 0.0 10 22.03 22.71 1.03 1.62 2.55 1.58 0.17 1.66 9.72

B 0.0 25 18.15 18.80 1.04 1.43 5.59 3.92 0.15 1.53 10.17

B 0.0 50 11.93 12.58 1.05 0.61 12.01 19.77 0.08 0.85 10.35

B 0.5 10 22.72 23.55 1.04 1.66 1.78 1.07 0.18 1.66 9.13

B 0.5 25 19.93 20.77 1.04 1.46 3.87 2.65 0.16 1.54 9.75

B 0.5 50 17.76 18.71 1.05 0.92 6.05 6.60 0.07 1.07 14.38

B 0.7 10 23.31 24.16 1.04 1.66 1.73 1.04 0.18 1.26 7.09

B 0.7 25 21.27 22.13 1.04 1.46 2.30 1.58 0.15 1.55 10.51

B 0.7 50 19.91 20.82 1.05 1.18 3.67 3.11 0.09 1.34 14.26

R - 0 26.20 26.23 1.00 3.47 3.22 0.93 0.36 0.63 1.78

R 0.0 10 23.59 23.84 1.01 2.84 2.86 1.01 0.25 2.57 10.20

R 0.0 25 19.57 19.81 1.01 2.38 6.20 2.60 0.20 2.33 11.91

R 0.0 50 12.23 12.90 1.05 1.45 12.20 8.39 0.15 1.77 11.53

R 0.5 10 23.68 24.14 1.02 2.76 2.76 1.00 0.28 1.90 6.69

R 0.5 25 21.45 21.90 1.02 2.48 4.31 1.74 0.25 2.45 9.70

R 0.5 50 19.30 19.88 1.03 1.79 6.35 3.55 0.13 1.93 14.89

R 0.7 10 24.45 24.86 1.02 2.88 2.87 1.00 0.30 1.18 4.01

R 0.7 25 22.91 23.30 1.02 2.64 3.16 1.20 0.23 2.28 10.09

R 0.7 50 21.78 22.25 1.02 2.32 3.89 1.68 0.17 2.39 14.17

Notes:
All results based on n=80 items and N=2000 respondents.

Exp = Derived from matrix of expected correlations

Obs = Derived from matrix of observed correlations.
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Table 3:
Revised Modified Parallel Analysis (RMPA) of 20 tests:
Means and standard deviations of the first three eigenvalues of the jacknifed
submatrices observed and ex ected

Eigenvalue 1 Eigenvalue 2 Eigenvalue 3

Rep r p Source Mean SD Mean SD Mean SD

0 Exp 24.036 0.122 1.764 0.029 0.165 0.004

Obs 24.786 0.118 1.756 0.027 0.664 0.009

0.0 10 Exp 21.752 0.145 1.598 0.026 0.168 0.004

Obs 22.429 0.147 2.515 0.103 1.637 0.027

0.0 25 Exp 17.920 0.163 1.409 0.027 0.148 0.004

Obs 18,563 0.169 5.519 0.143 1.507 0.027

0.0 50 Exp 11.778 0.136 0.600 0.013 0.081 0.002

Obs 12.432 0.158 11.842 0.165 0.842 0.016

0.5 10 Exp 22.437 0.133 1.640 0.027 0.179 0.004

Obs 23.255 0.128 1.769 0.036 1.630 0.038

B 0.5 25 Exp 19.685 0.136 1.443 0.026 0.156 0.004

Obs 20.507 0.128 3.818 0.084 1.525 0.027

B 0.5 50 Exp 17.536 0.089 0.906 0.014 0.073 0.002

Obs 18.472 0.085 5.972 0.035 1.053 0.019

B 0.7 10 Exp 23.023 0.125 1.640 0.026 0.175 0.004

Obs 23.858 0.119 1.713 0.025 1.241 0.043

0.7 25 Exp 21.008 0.126 1.437 0.024 0.145 0.003

Obs 21.850 0.122 2.267 0.048 1.526 0.027

0.7 50 Exp 19.660 0.103 1.164 0.019 0.093 0.002

Obs 20.564 0.101 3.625 0.025 1.326 0.021

0 Exp 25.874 0.128 3.424 0.040 0.35 1 0.006

Obs 25.899 0.132 3.178 0.036 0.628 0.007

0.0 10 Exp 23.292 0.155 2.808 0.040 0.249 0.006

Obs 23.547 0.160 2.829 0.035 2.531 0.113

0.0 25 Exp 19.330 0.174 2.354 0.039 0.193 0.005

Obs 19.561 0.182 6.121 0.149 2.301 0.035

0.0 50 Exp 12.078 0.142 1.436 0.031 0.152 0.004

Obs 12.735 0.187 12.045 0.175 1.751 0.037

0.5 10 Exp 23.389 0.141 2.726 0.038 0.281 0.006

Obs 23.835 0.138 2.726 0.034 1.876 0.078

0.5 25 Exp 21.181 0.152 2.449 0.038 0.249 0.006

Obs 21.629 0.143 4.251 0.084 2.415 0.035

0.5 50 Exp 19.063 0.107 1.763 0.023 0.128 0.004

Obs 19.636 0.101 6.263 0.037 1.906 0.025

0.7 10 Exp 24.145 0.136 2.839 0.038 0.291 0.006

Obs 24.552 0.132 2.8:.)5 0.033 1.166 0.043

0.7 25 Exp 22.627 0.138 2.605 0.037 0.223 0.005

Obs 23.006 0.132 3.123 0.040 2.252 0.033

0.7 50 Exp 21.504 0.118 2.292 0.030 0.166 0.004

Obs 21.970 0.116 3.843 0.027 2.357 0.030

Notesi
All results based on n=80 items and N=2000 respondents.
Exp = Derived from matrix of expected correlations
Obs = Derived from matrix of observed correlations.
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Table 4:

Revised Modified Parallel Analysis (RMPA) of 20 tests:
Ratio of means and variances of eigenvalues of the jacknifed submatrices
(Ratio = observed / expected)

Rep r p

Eigenvalue 1
Mean Var

Eig.envalue 2 Eigenvalue 3
Mean Var Mean Var. .

B 0 1.031 0.933 0.995 0.884 4.030 6.007

B 0.0 10 1.031 1.034 1.574 15.449 9.730 44.102

B 0.0 25 1.036 1.074 3.917 28.726 10.187 52.047

B 0.0 50 1.056 1.355 19.748 151.159 10.350 83.432

B 0.5 10 1.036 0.920 1.078 1.779 9.084 80.253

B 0.5 25 1.042 0.885 2.646 10.454 9.763 44.765

B 0.5 50 1.053 0.909 6.594 5.886 14.379 133.295

B 0.7 10 1.036 0.916 1.045 0.908 7.086 116.778

B 0.7 25 1.040 0.934 1.578 3.836 10.524 62.910

B 0.7 50 1.046 0.955 3.114 1.681 14.278 92.026

R 0 1.001 1.054 0.928 0.804 1.790 1.296

R 0.0 10 1.011 1.067 1.008 0.776 10.183 370.061

R 0.0 25 1.012 1.094 2.600 14.554 11.918 53.081

R 0.0 50 1.054 1.746 8.387 31.775 11.527 78.033

R 0.5 10 1.019 0.946 1.000 0.786 6.685 165.024

R 0.5 25 1.021 0.888 1.736 4.773 9.705 36.368

R 0.5 50 1.030 0.892 3.554 2.554 14.892 45.144

R 0.7 10 1.017 0.944 0.999 0.770 4.004 44.388

R 0.7 25 1.017 0.916 1.199 1.205 10.082 42.093

R 0.7 50 1.022 0.966 1.677 0.763 14.166 68.059

Notes:
All results based on n=80 items and N=2000 respondents.
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Table 5:
Revised Modified Parallel Analysis (RMPA) of 20 tests:
Correlations of eigenvalues of the observed and the expected jacknifed submatrices

Rep r p Ev 1 Ev 2 Ev 3 Rep r p Ev I Ev 2 Ev 3

B - 0 0.996 0.888 0.650 R - 0 0.976 0.956 0.195

B 0.0 10 0.995 -0.237 0.603 R 0.0 10 0.995 0.963 -0.147

B 0.0 25 0.996 -0.337 0.655 R 0.0 25 0.996 -0.414 0.306

B 0.0 50 0.981 -0.459 -0.049 R 0.0 50 -0.641 0.537 0.321

B 0.5 10 0.997 -0.256 0.299 R 0.5 10 0.998 0.968 -0.129

B 0.5 25 0.998 -0.320 0.593 R 0.5 25 0.996 -0.320 0.394

B 0.5 50 0.990 -0.180 0.310 R 0.5 50 0.996 -0.007 0.218

B 0.7 10 0.997 0.863 -0.111 R 0.7 10 0.998 0.968 -0.111

B 0.7 25 0.996 -0.311 0.608 R 0.7 25 0.995 0.350 0.140

B 0.7 50 0.997 -0.206 0.508_ R 0.7 50 0.996 0.060 0.127

iVotes:
All results based on n=80 items and N=2000 respondents.

Ev = Eigenvalue
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Table 6:
Revised Modified Parallel Analysis (RMPA) of 20 tests:
Six detection thresholds based on the distribution of the standardized
Weighted Gaps (SWGs) based on the ratio of the first observed and expected
jacknifed eigenvalues

Rep r p

SWG
Mean S.D.

Threshold
95 % 99 %

Enp UChe Cheb Emp UChe Cheb

B - 0 0.94 0.49 1.89 2.42 3.17 2.38 4.24 5.88

B 0.0 10 0.91 0.58 1.94 2.67 3,54 2.58 4.81 6.76

B 0.0 25 0.97 0.52 1.96 2.54 3.32 2.87 4.45 6,19

B 0.0 50 0.84 0.56 2.07 2.53 3.37 3.09 4.59 6.46

B 0.5 10 0.90 0.42 1.61 2.15 2.77 1.92 3.67 5.06

B 0.5 25 0.96 0.53 2.01 2.56 3.36 2.93 4.52 6.30

B 0.5 50 0.97 0.51 1.84 2.50 3.26 2.26 4.37 6.07

B 0.7 10 0.98 0.50 1.89 2.48 3.23 2.80 4.31 5.97

B 0.7 25 0.95 0.57 2.13 2.65 3.50 2.66 4.73 6.61

B 0.7 50 0.89 0.52 1.92 2.45 3.23 2.13 4.35 6.08

B Mean 0.93 0.52 1.93 2.49 3.27 2.56 4.40 6.14

R - 0 0.95 0.44 1.65 2.27 2.93 2.12 3.89 5.36

R 0.0 10 0.99 0.56 1.85 2.66 3.50 3.40 4.72 6.58

R 0.0 25 0.94 0.54 1.90 2.56 3.37 2.65 4.54 6.33

R 0.0 50 0.79 0.51 1.77 2.30 3.06 2.47 4.16 5.84

R 0.5 10 0.99 0.48 1.82 2.42 3.14 1.93 4.18 5.78

R 0.5 25 0.95 0.52 2.03 2.52 3.31 2.24 4.44 6.18

R 0.5 50 0.93 0.53 1.82 2.53 3.33 3.00 4.48 6.25

R 0.7 10 1.07 0.61 2.16 2.90 3.81 2.87 5.12 7.14

R 0.7 25 0.92 0.45 1.95 2.28 2.95 2.23 3.93 5.43

R 0.7 50 0.96 0.47 1.85 2.38 3.09 2.03 4.12 5.70

R Mean 0.95 0.51 1.88 2.48 3.25 2.49 4.35 6.06

Mean 0.94 0.52 1.90 2.49 3.26 2.53 4.38 6.10

Notes:
All results based on n=80 items and N=2000 respondents.
Ernp = Empirical distribution
UChe = Chebyshev bound assuming unimodality
Cheb = Chebyshev bound
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Table 7:
Revised Modified Parallel Analysis (RMPA):
Proportion of Standardized Weighted Gaps (SWGs) exceeding each of the six
thresholds in the uncontaminated unidimensional test

Threshold
95 % 99 %

Eigenvalue Emp UChe Cheb Emp UChe Cheb

1 0.051 0.000 0.000 0.013 0.000 0.000

2 0.177 0.063 0.019 0.070 0.006 0.000

3 0.215 0.108 0.038 0.120 0.006 0.000

Mean 0.148 0.057 0.019 0.068 0.004 0.000

Notes:
All results based on n=80 items and N=2000 respondents.
Emp = Empirical distribution
UChe = Chebyshev bound assurriing unimodality
Cheb = Chebyshev bound
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Table 8a:
Revised Modified Parallel Analysis (RMPA) of 20 tests:
Maximal Standardized Weighted Gap (SWG) and significance according to three
types of thresholds (First eigenvalue)

Rep r Gap Max(SWG)

Significance* No. of items

95% 99% Below Above

B - 0 0.00007800 2.37665 1 1 40 40

B 0.0 10 0.00011536 2.58303 1 1 29 51

B 0.0 25 0.00017863 2.87133 2 1 52 28

B 0.0 50 0.00074733 3.09437 2 1 46 34

B 0.5 10 0.00007026 1.92493 1 1 42 38

B 0.5 25 0.00023166 2.93434 2 1 10 60

B 0.5 50 0.00011191 2.25905 1 1 49 31

B 0.7 10 0.00011347 2.80103 1 1 35 45

B 0.7 25 0.00059257 2.66357 2 1 76 4

B 0.7 50 0.00035381 2.12819 1 1 76 4

R .. 0 0.00013665 2.12450 1 1 30 50

R 0.0 10 0.00083803 3.39892 2 1 4 76

R 0.0 25 0.00019422 2.65083 1 1 22 58

R 0.0 50 0.00513373 2.47295 2 1 40 40

R 0.5 10 0.00004417 1.92817 1 1 33 47

R 0.5 25 0.00010552 2.24198 1 1 38 42

R 0.5 50 0.00017510 2.99795 2 1 28 52

R 0.7 10 0.00010866 2.87002 1 1 16 64

R 0.7 25 0.00009185 2.22529 1 1 33 47

R 0.7 50 0.00017596 2.02883 1 1 7 73

*Note:
1 --> Max(SWG) > Empirical percentile
2 --> Max(SWG) > Chebyshev + unimodality
3 --> Max(SWG) > Chebyshev
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Table 8b:
Revised Modified Parallel Analysis (RMPA) of 20 tests:
Maximal Standardized Weighted Gap (SWG) and significance according to three
types of thresholds (Second eigenvalue)

Rep r p Gap Max(SWG)

Significance* No. of items

95% 99% Below Above

B - 0 0.002948 4.6028 3 2 13 67

B 0.0 10 0.154001 10.3842 3 3 72 8*

B 0.0 25 0.058056 5.5693 3 2 61 19*

B 0.0 50 0.420034 2.9129 2 0 6 74

B 0.5 10 0.061734 7.9202 3 3 72 8*

B 0.5 25 0.020733 3.9763 3 1 62 18*

B 0.5 50 0.016864 2.7078 2 1 30 50

B 0.7 10 0.017799 3.6832 3 1 78 /
B 0.7 25 0.017849 4.2707 3 1 64 16

B 0.7 50 0.061186 2.6536 2 1 3 77

R 0 0.002074 2.6308 2 1 4 76

R 0.0 10 0.001358 3.1794 2 0 10 70

R 0.0 25 0.041428 5.1730 3 2 60 20*

R 0.0 50 0.063916 7.3824 3 3 15 65

R 0.5 10 0.002657 2.7704 2 1 4 76

R 0.5 25 0.032784 6.7929 3 3 61 19*

R 0.5 50 0.027717 3.0870 2 1 7 73

R 0.7 10 0.000493 2.7074 1 0 23 57

R 0.7 25 0.005675 2.7842 2 1 71 9

R 0.7 50 0.005415 2.7835 2 1 19 61

*Note:
1 --> Max(SWG) > Empirical percentile
2 --> Max(SWG) > Chebyshev + unimodality
3 -> Max(SWG) > Chebyshev
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Table 8c:
Revised Modified Parallel Analysis (RMPA) of 20 tests:
Maximal Standardized Weighted Gap (SWG) and significance according to three
types of thresholds (Third eigenvalue)

ep Gap Max(SWG)

Significance* No. of items

95% 99% Below Above I

B - 0 0.197155 5.0647 3 2 / 78

B 0.0 10 0.407039 3.5361 / 1 1 79

E 0.0 25 0.087976 4.3483 3 1 9 71

B 0.0 50 0.065372 3.5205 3 1 12 68

B 0.5 10 0.110290 3.4420 3 1 73 7

B 0.5 25 0.138565 4.4914 3 1 6 74

B 0.5 50 0.237589 5.5091 3 2 9 71

B 0.7 10 0.184939 7.1549 3 3 71 9*

B 0.7 25 0.140215 5.1461 3 2 8 72

B 0.7 50 0.116452 3.3573 3 1 7 73

R - 0 0.013257 3.6044 3 1 9 71

R. 0.0 10 0.419092 9.4241 3 3 72 8*

R 0.0 25 0.115029 4.1520 3 1 10 70

R 0.0 50 0.225673 8.3301 3 3 10 70

R 0.5 10 0.287058 10.3919 3 3 72 8*

R 0.5 25 0.118107 5.3490 3 2 12 68

R 0.5 50 0.464085 4.3802 3 1 3 77

R 0.7 10 0.111553 6.4281 3 2 72 8*

R 0.7 25 0.072746 3.5625 3 1 11 69

R 0.7 50 0.272261 4.7821 3 2 7 73

*Note:
1 Max(SWG) > Empirical percentile
2 --> Max(SWG) > Chebyshev + unimodality
3 --> Max(SWG) > Chebyshev
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Table 9:
Revised Modified Parallel Analysis (RMPA) of 10 short tests:
Total number of items eliminated and accuracy of the elimination procedure

Items eliminated

Rep r P Total % of % of Significant
"hits" "false alarms" Eigenvalue

B 0.0 10 8 100 0 2

B 0.5 10 8 100 0 2

B 0.7 10 9 100 1 3

R 0.0 10 8 100 0 3

R 0.5 10 8 100 0 3

R 0.7 10 8 100 0 3

Mean 8.2 100 0.2

B 0.0 25 19 95 0 i
B 0.5 25 18 90 0 2

R 0.0 25 20 100 0 2

R 0.5 25 19 95 0 2

Mean 19 95 0

Mean 98 0.1

Note:
Tests shortened by 99% criterion
* These tests shortened by a 95% criterion
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Table 10:
Modified Parallel Analysis (MPA) of 10 short tests:
The first three eigenvalues for the observed and expected matrices, and their ratios

Rep r p

Eigenvalue 1 Eigenvalue 2 Eigenvalue 3

Exp Obs Obs/Exp Exp Obs Obs/Exp Exp Obs Obs/Exp'

B 0.0 10 21.86 22.71 1.04 1.62 1.65 1.02 0.17 0.62 3.64

B 0.0 25 17.89 18.78 1.05 1.42 1.48 1.05 0.14 0.56 3.86

B 0.5 10 21.95 22.71 1.03 1.65 1.65 1.00 0.18 0.62 3.51

B 0.5 25 18.00 18.85 1.05 1.40 1.49 1.06 0.15 0.58 3.89

B 0.7 10 21.49 22.27 1.04 1.58 1.61 1.01 0.17 0.62 3.63

R 0.0 10 23.35 23.84 1.02 2.84 2.85 1.01 0.25 0.54 2.19

R 0.0 25 19.17 19.79 1.03 2.37 2.30 0.98 0.19 0.50 2.63

R 0.5 10 22.79 23.21 1.02 2.70 2.71 1.00 0.28 0.58 2.10

R 0.5 25 19.27 19.73 1.02 2.33 2.45 1.05 0.24 0.53 2.21

R 0.7 10 22.83 23.21 1.02 2.73 2.71 0.99 0.28 0.58 2.04

Notes:
All results based on N=2000 respondents, and various number of items.
Exp = Derived from matrix of expected correlations
Obs = Derived from matrix of observed correlations.

Table 11:
Revised Modified Parallel Analysis (RMPA) of 10 short tests:
Ratio of means and variances of eigenvalues of the jacknifed submatrices
(Ratio = observed / expected)

Rep r p
Eigenvalue 1 Eigenvalue 2

Mean Var
Eigenvalue 3

Mean V ar Mean Var

B 0.0 10 1.039 0.928 1.023 1.066 3.660 5.473

B 0.0 25 1.049 0.923 1.046 1.032 3.889 4.006

B 0.5 10 1.035 0.922 1.005 0.983 3.526 5.112

B 0.5 25 1.047 0 959 1.064 1.065 3.913 6.538

B 0.7 10 1.036 0.919 1.015 1.072 3.641 5.785

R 0.0 10 1.021 0.975 1.005 0.816 2.202 1.152

R 0.0 25 1.033 0.947 0.976 0.760 2.648 1.670

R 0.5 10 1.018 0.960 1.001 0.785 2.107 1.299

R 0.5 25 1.024 0.997 1.054 0.863 2.227 1.418

R 0.7 10 1.017 0.949 0.991 0.772 2.047 1.102
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